回归 - 基于 RDD 的 API
保序回归
保序回归 属于回归算法家族。形式上,保序回归是一个问题,给定一个有限的实数集 $Y = {y_1, y_2, ..., y_n}$
表示观察到的响应,$X = {x_1, x_2, ..., x_n}$
表示要拟合的未知响应值,找到一个函数,使
\begin{equation} f(x) = \sum_{i=1}^n w_i (y_i - x_i)^2 \end{equation}
在完全排序约束下最小化 $x_1\le x_2\le ...\le x_n$
,其中 $w_i$
是正权重。得到的函数称为保序回归,它是唯一的。它可以看作是顺序约束下的最小二乘问题。本质上,保序回归是一个最适合原始数据点的 单调函数。
spark.mllib
支持 相邻违规者池算法,该算法使用一种 并行化保序回归 的方法。训练输入是一个由三个双精度值组成的元组的 RDD,分别表示标签、特征和权重。如果有多个元组具有相同的特征,则这些元组将聚合为一个元组,如下所示
- 聚合标签是所有标签的加权平均值。
- 聚合特征是唯一的特征值。
- 聚合权重是所有权重的总和。
此外,IsotonicRegression 算法还有一个可选参数 $isotonic$,默认为 true。该参数指定保序回归是保序的(单调递增)还是反序的(单调递减)。
训练返回一个 IsotonicRegressionModel,可用于预测已知和未知特征的标签。保序回归的结果被视为分段线性函数。因此,预测规则如下
- 如果预测输入与训练特征完全匹配,则返回关联的预测。
- 如果预测输入低于或高于所有训练特征,则分别返回具有最低或最高特征的预测。
- 如果预测输入介于两个训练特征之间,则将预测视为分段线性函数,并根据两个最接近特征的预测计算插值。
示例
从文件中读取数据,每行的格式为标签、特征,例如 4710.28,500.00。数据被分为训练集和测试集。使用训练集创建模型,并根据测试集中预测的标签和真实标签计算均方误差。
有关 API 的更多详细信息,请参阅 IsotonicRegression
Python 文档 和 IsotonicRegressionModel
Python 文档。
import math
from pyspark.mllib.regression import IsotonicRegression, IsotonicRegressionModel
from pyspark.mllib.util import MLUtils
# Load and parse the data
def parsePoint(labeledData):
return (labeledData.label, labeledData.features[0], 1.0)
data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_isotonic_regression_libsvm_data.txt")
# Create label, feature, weight tuples from input data with weight set to default value 1.0.
parsedData = data.map(parsePoint)
# Split data into training (60%) and test (40%) sets.
training, test = parsedData.randomSplit([0.6, 0.4], 11)
# Create isotonic regression model from training data.
# Isotonic parameter defaults to true so it is only shown for demonstration
model = IsotonicRegression.train(training)
# Create tuples of predicted and real labels.
predictionAndLabel = test.map(lambda p: (model.predict(p[1]), p[0]))
# Calculate mean squared error between predicted and real labels.
meanSquaredError = predictionAndLabel.map(lambda pl: math.pow((pl[0] - pl[1]), 2)).mean()
print("Mean Squared Error = " + str(meanSquaredError))
# Save and load model
model.save(sc, "target/tmp/myIsotonicRegressionModel")
sameModel = IsotonicRegressionModel.load(sc, "target/tmp/myIsotonicRegressionModel")
从文件中读取数据,每行的格式为标签、特征,例如 4710.28,500.00。数据被分为训练集和测试集。使用训练集创建模型,并根据测试集中预测的标签和真实标签计算均方误差。
有关 API 的详细信息,请参阅 IsotonicRegression
Scala 文档 和 IsotonicRegressionModel
Scala 文档。
import org.apache.spark.mllib.regression.{IsotonicRegression, IsotonicRegressionModel}
import org.apache.spark.mllib.util.MLUtils
val data = MLUtils.loadLibSVMFile(sc,
"data/mllib/sample_isotonic_regression_libsvm_data.txt").cache()
// Create label, feature, weight tuples from input data with weight set to default value 1.0.
val parsedData = data.map { labeledPoint =>
(labeledPoint.label, labeledPoint.features(0), 1.0)
}
// Split data into training (60%) and test (40%) sets.
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)
// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
val model = new IsotonicRegression().setIsotonic(true).run(training)
// Create tuples of predicted and real labels.
val predictionAndLabel = test.map { point =>
val predictedLabel = model.predict(point._2)
(predictedLabel, point._1)
}
// Calculate mean squared error between predicted and real labels.
val meanSquaredError = predictionAndLabel.map { case (p, l) => math.pow((p - l), 2) }.mean()
println(s"Mean Squared Error = $meanSquaredError")
// Save and load model
model.save(sc, "target/tmp/myIsotonicRegressionModel")
val sameModel = IsotonicRegressionModel.load(sc, "target/tmp/myIsotonicRegressionModel")
从文件中读取数据,每行的格式为标签、特征,例如 4710.28,500.00。数据被分为训练集和测试集。使用训练集创建模型,并根据测试集中预测的标签和真实标签计算均方误差。
有关 API 的详细信息,请参阅 IsotonicRegression
Java 文档 和 IsotonicRegressionModel
Java 文档。
import scala.Tuple2;
import scala.Tuple3;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.regression.IsotonicRegression;
import org.apache.spark.mllib.regression.IsotonicRegressionModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(
jsc.sc(), "data/mllib/sample_isotonic_regression_libsvm_data.txt").toJavaRDD();
// Create label, feature, weight tuples from input data with weight set to default value 1.0.
JavaRDD<Tuple3<Double, Double, Double>> parsedData = data.map(point ->
new Tuple3<>(point.label(), point.features().apply(0), 1.0));
// Split data into training (60%) and test (40%) sets.
JavaRDD<Tuple3<Double, Double, Double>>[] splits =
parsedData.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD<Tuple3<Double, Double, Double>> training = splits[0];
JavaRDD<Tuple3<Double, Double, Double>> test = splits[1];
// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
IsotonicRegressionModel model = new IsotonicRegression().setIsotonic(true).run(training);
// Create tuples of predicted and real labels.
JavaPairRDD<Double, Double> predictionAndLabel = test.mapToPair(point ->
new Tuple2<>(model.predict(point._2()), point._1()));
// Calculate mean squared error between predicted and real labels.
double meanSquaredError = predictionAndLabel.mapToDouble(pl -> {
double diff = pl._1() - pl._2();
return diff * diff;
}).mean();
System.out.println("Mean Squared Error = " + meanSquaredError);
// Save and load model
model.save(jsc.sc(), "target/tmp/myIsotonicRegressionModel");
IsotonicRegressionModel sameModel =
IsotonicRegressionModel.load(jsc.sc(), "target/tmp/myIsotonicRegressionModel");