基本统计

\[ \newcommand{\R}{\mathbb{R}} \newcommand{\E}{\mathbb{E}} \newcommand{\x}{\mathbf{x}} \newcommand{\y}{\mathbf{y}} \newcommand{\wv}{\mathbf{w}} \newcommand{\av}{\mathbf{\alpha}} \newcommand{\bv}{\mathbf{b}} \newcommand{\N}{\mathbb{N}} \newcommand{\id}{\mathbf{I}} \newcommand{\ind}{\mathbf{1}} \newcommand{\0}{\mathbf{0}} \newcommand{\unit}{\mathbf{e}} \newcommand{\one}{\mathbf{1}} \newcommand{\zero}{\mathbf{0}} \]

目录

相关性

计算两组数据之间的相关性是统计学中的常见操作。在 spark.ml 中,我们提供了计算多组数据之间两两相关性的灵活性。目前支持的相关性方法是皮尔逊相关和斯皮尔曼相关。

Correlation 使用指定的方法计算输入向量数据集(Dataset of Vectors)的相关矩阵。输出将是一个 DataFrame,其中包含向量列的相关矩阵。

from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation

data = [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)]),),
        (Vectors.dense([4.0, 5.0, 0.0, 3.0]),),
        (Vectors.dense([6.0, 7.0, 0.0, 8.0]),),
        (Vectors.sparse(4, [(0, 9.0), (3, 1.0)]),)]
df = spark.createDataFrame(data, ["features"])

r1 = Correlation.corr(df, "features").head()


print("Pearson correlation matrix:\n" + str(r1[0]))

r2 = Correlation.corr(df, "features", "spearman").head()


print("Spearman correlation matrix:\n" + str(r2[0]))
完整示例代码请参见 Spark 仓库中的 "examples/src/main/python/ml/correlation_example.py"。

Correlation 使用指定的方法计算输入向量数据集(Dataset of Vectors)的相关矩阵。输出将是一个 DataFrame,其中包含向量列的相关矩阵。

import org.apache.spark.ml.linalg.{Matrix, Vectors}
import org.apache.spark.ml.stat.Correlation
import org.apache.spark.sql.Row

val data = Seq(
  Vectors.sparse(4, Seq((0, 1.0), (3, -2.0))),
  Vectors.dense(4.0, 5.0, 0.0, 3.0),
  Vectors.dense(6.0, 7.0, 0.0, 8.0),
  Vectors.sparse(4, Seq((0, 9.0), (3, 1.0)))
)

val df = data.map(Tuple1.apply).toDF("features")
val Row(coeff1: Matrix) = Correlation.corr(df, "features").head()
println(s"Pearson correlation matrix:\n $coeff1")

val Row(coeff2: Matrix) = Correlation.corr(df, "features", "spearman").head()
println(s"Spearman correlation matrix:\n $coeff2")
完整示例代码请参见 Spark 仓库中的 "examples/src/main/scala/org/apache/spark/examples/ml/CorrelationExample.scala"。

Correlation 使用指定的方法计算输入向量数据集(Dataset of Vectors)的相关矩阵。输出将是一个 DataFrame,其中包含向量列的相关矩阵。

import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.Correlation;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;

List<Row> data = Arrays.asList(
  RowFactory.create(Vectors.sparse(4, new int[]{0, 3}, new double[]{1.0, -2.0})),
  RowFactory.create(Vectors.dense(4.0, 5.0, 0.0, 3.0)),
  RowFactory.create(Vectors.dense(6.0, 7.0, 0.0, 8.0)),
  RowFactory.create(Vectors.sparse(4, new int[]{0, 3}, new double[]{9.0, 1.0}))
);

StructType schema = new StructType(new StructField[]{
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
});

Dataset<Row> df = spark.createDataFrame(data, schema);
Row r1 = Correlation.corr(df, "features").head();
System.out.println("Pearson correlation matrix:\n" + r1.get(0).toString());

Row r2 = Correlation.corr(df, "features", "spearman").head();
System.out.println("Spearman correlation matrix:\n" + r2.get(0).toString());
完整示例代码请参见 Spark 仓库中的 "examples/src/main/java/org/apache/spark/examples/ml/JavaCorrelationExample.java"。

假设检验

假设检验是统计学中一种强大的工具,用于确定结果是否具有统计学意义,以及该结果是否偶然发生。spark.ml 目前支持皮尔逊卡方($\chi^2$)独立性检验。

卡方检验

ChiSquareTest 对每个特征执行皮尔逊独立性检验,对照标签。对于每个特征,(特征, 标签) 对被转换为列联表,并计算其卡方统计量。所有标签和特征值必须是分类的。

有关 API 的详细信息,请参阅 ChiSquareTest Python 文档

from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import ChiSquareTest

data = [(0.0, Vectors.dense(0.5, 10.0)),
        (0.0, Vectors.dense(1.5, 20.0)),
        (1.0, Vectors.dense(1.5, 30.0)),
        (0.0, Vectors.dense(3.5, 30.0)),
        (0.0, Vectors.dense(3.5, 40.0)),
        (1.0, Vectors.dense(3.5, 40.0))]
df = spark.createDataFrame(data, ["label", "features"])

r = ChiSquareTest.test(df, "features", "label").head()



print("pValues: " + str(r.pValues))
print("degreesOfFreedom: " + str(r.degreesOfFreedom))
print("statistics: " + str(r.statistics))
完整示例代码请参见 Spark 仓库中的 "examples/src/main/python/ml/chi_square_test_example.py"。

有关 API 的详细信息,请参阅 ChiSquareTest Scala 文档

import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.ChiSquareTest

val data = Seq(
  (0.0, Vectors.dense(0.5, 10.0)),
  (0.0, Vectors.dense(1.5, 20.0)),
  (1.0, Vectors.dense(1.5, 30.0)),
  (0.0, Vectors.dense(3.5, 30.0)),
  (0.0, Vectors.dense(3.5, 40.0)),
  (1.0, Vectors.dense(3.5, 40.0))
)

val df = data.toDF("label", "features")
val chi = ChiSquareTest.test(df, "features", "label").head()
println(s"pValues = ${chi.getAs[Vector](0)}")
println(s"degreesOfFreedom ${chi.getSeq[Int](1).mkString("[", ",", "]")}")
println(s"statistics ${chi.getAs[Vector](2)}")
完整示例代码请参见 Spark 仓库中的 "examples/src/main/scala/org/apache/spark/examples/ml/ChiSquareTestExample.scala"。

有关 API 的详细信息,请参阅 ChiSquareTest Java 文档

import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.ChiSquareTest;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;

List<Row> data = Arrays.asList(
  RowFactory.create(0.0, Vectors.dense(0.5, 10.0)),
  RowFactory.create(0.0, Vectors.dense(1.5, 20.0)),
  RowFactory.create(1.0, Vectors.dense(1.5, 30.0)),
  RowFactory.create(0.0, Vectors.dense(3.5, 30.0)),
  RowFactory.create(0.0, Vectors.dense(3.5, 40.0)),
  RowFactory.create(1.0, Vectors.dense(3.5, 40.0))
);

StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
});

Dataset<Row> df = spark.createDataFrame(data, schema);
Row r = ChiSquareTest.test(df, "features", "label").head();
System.out.println("pValues: " + r.get(0).toString());
System.out.println("degreesOfFreedom: " + r.getList(1).toString());
System.out.println("statistics: " + r.get(2).toString());
完整示例代码请参见 Spark 仓库中的 "examples/src/main/java/org/apache/spark/examples/ml/JavaChiSquareTestExample.java"。

汇总器

我们通过 SummarizerDataframe 提供向量列的汇总统计信息。可用的指标包括列的最大值、最小值、平均值、总和、方差、标准差、非零值的数量以及总计数。

有关 API 的详细信息,请参阅 Summarizer Python 文档

from pyspark.ml.stat import Summarizer
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

df = sc.parallelize([Row(weight=1.0, features=Vectors.dense(1.0, 1.0, 1.0)),
                     Row(weight=0.0, features=Vectors.dense(1.0, 2.0, 3.0))]).toDF()

# create summarizer for multiple metrics "mean" and "count"
summarizer = Summarizer.metrics("mean", "count")

# compute statistics for multiple metrics with weight
df.select(summarizer.summary(df.features, df.weight)).show(truncate=False)

# compute statistics for multiple metrics without weight
df.select(summarizer.summary(df.features)).show(truncate=False)

# compute statistics for single metric "mean" with weight
df.select(Summarizer.mean(df.features, df.weight)).show(truncate=False)

# compute statistics for single metric "mean" without weight
df.select(Summarizer.mean(df.features)).show(truncate=False)
完整示例代码请参见 Spark 仓库中的 "examples/src/main/python/ml/summarizer_example.py"。

以下示例演示了如何使用 Summarizer 计算输入数据帧中向量列的平均值和方差,分别在有和没有权重列的情况下。

import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.stat.Summarizer

val data = Seq(
  (Vectors.dense(2.0, 3.0, 5.0), 1.0),
  (Vectors.dense(4.0, 6.0, 7.0), 2.0)
)

val df = data.toDF("features", "weight")

val (meanVal, varianceVal) = df.select(metrics("mean", "variance")
  .summary($"features", $"weight").as("summary"))
  .select("summary.mean", "summary.variance")
  .as[(Vector, Vector)].first()

println(s"with weight: mean = ${meanVal}, variance = ${varianceVal}")

val (meanVal2, varianceVal2) = df.select(mean($"features"), variance($"features"))
  .as[(Vector, Vector)].first()

println(s"without weight: mean = ${meanVal2}, sum = ${varianceVal2}")
完整示例代码请参见 Spark 仓库中的 "examples/src/main/scala/org/apache/spark/examples/ml/SummarizerExample.scala"。

以下示例演示了如何使用 Summarizer 计算输入数据帧中向量列的平均值和方差,分别在有和没有权重列的情况下。

import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.Summarizer;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

List<Row> data = Arrays.asList(
  RowFactory.create(Vectors.dense(2.0, 3.0, 5.0), 1.0),
  RowFactory.create(Vectors.dense(4.0, 6.0, 7.0), 2.0)
);

StructType schema = new StructType(new StructField[]{
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
  new StructField("weight", DataTypes.DoubleType, false, Metadata.empty())
});

Dataset<Row> df = spark.createDataFrame(data, schema);

Row result1 = df.select(Summarizer.metrics("mean", "variance")
  .summary(new Column("features"), new Column("weight")).as("summary"))
  .select("summary.mean", "summary.variance").first();
System.out.println("with weight: mean = " + result1.<Vector>getAs(0).toString() +
  ", variance = " + result1.<Vector>getAs(1).toString());

Row result2 = df.select(
  Summarizer.mean(new Column("features")),
  Summarizer.variance(new Column("features"))
).first();
System.out.println("without weight: mean = " + result2.<Vector>getAs(0).toString() +
  ", variance = " + result2.<Vector>getAs(1).toString());
完整示例代码请参见 Spark 仓库中的 "examples/src/main/java/org/apache/spark/examples/ml/JavaSummarizerExample.java"。