CREATE HIVEFORMAT TABLE
描述
CREATE TABLE
语句使用 Hive 格式定义一个新表。
语法
CREATE [ EXTERNAL ] TABLE [ IF NOT EXISTS ] table_identifier
[ ( col_name1[:] col_type1 [ COMMENT col_comment1 ], ... ) ]
[ COMMENT table_comment ]
[ PARTITIONED BY ( col_name2[:] col_type2 [ COMMENT col_comment2 ], ... )
| ( col_name1, col_name2, ... ) ]
[ CLUSTERED BY ( col_name1, col_name2, ...)
[ SORTED BY ( col_name1 [ ASC | DESC ], col_name2 [ ASC | DESC ], ... ) ]
INTO num_buckets BUCKETS ]
[ ROW FORMAT row_format ]
[ STORED AS file_format ]
[ LOCATION path ]
[ TBLPROPERTIES ( key1=val1, key2=val2, ... ) ]
[ AS select_statement ]
请注意,列定义子句和 AS SELECT 子句之间的子句可以按任何顺序排列。 例如,您可以在 TBLPROPERTIES 之后编写 COMMENT table_comment。
参数
-
table_identifier
指定一个表名,可以选择性地用数据库名进行限定。
语法:
[ database_name. ] table_name
-
EXTERNAL
使用作为
LOCATION
提供的路径定义表,不使用此表的默认位置。 -
PARTITIONED BY
基于指定的列在表上创建分区。
-
CLUSTERED BY
在表上创建的分区将基于指定的 bucketing 列被 bucketed 到固定 bucket 中。
注意: Bucketing 是一种优化技术,它使用 bucket (和 bucketing 列) 来确定数据分区并避免数据 shuffle。
-
SORTED BY
指定 bucket 列的排序。 可选地,可以在 SORTED BY 子句中的任何列名之后使用 ASC 表示升序,或使用 DESC 表示降序。 如果未指定,则默认情况下假定为 ASC。
-
INTO num_buckets BUCKETS
指定 bucket 数量,该数量在
CLUSTERED BY
子句中使用。 -
row_format
指定输入和输出的行格式。 有关更多语法详细信息,请参见 HIVE FORMAT。
-
STORED AS
表存储的文件格式,可以是 TEXTFILE,ORC,PARQUET 等。
-
LOCATION
表数据存储目录的路径,该路径可以是分布式存储上的路径,例如 HDFS 等。
-
COMMENT
描述表的字符串文字。
-
TBLPROPERTIES
用于标记表定义的键值对列表。
-
AS select_statement
该表使用 select 语句中的数据填充。
示例
--Use hive format
CREATE TABLE student (id INT, name STRING, age INT) STORED AS ORC;
--Use data from another table
CREATE TABLE student_copy STORED AS ORC
AS SELECT * FROM student;
--Specify table comment and properties
CREATE TABLE student (id INT, name STRING, age INT)
COMMENT 'this is a comment'
STORED AS ORC
TBLPROPERTIES ('foo'='bar');
--Specify table comment and properties with different clauses order
CREATE TABLE student (id INT, name STRING, age INT)
STORED AS ORC
TBLPROPERTIES ('foo'='bar')
COMMENT 'this is a comment';
--Create partitioned table
CREATE TABLE student (id INT, name STRING)
PARTITIONED BY (age INT)
STORED AS ORC;
--Create partitioned table with different clauses order
CREATE TABLE student (id INT, name STRING)
STORED AS ORC
PARTITIONED BY (age INT);
--Use Row Format and file format
CREATE TABLE student (id INT, name STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE;
--Use complex datatype
CREATE EXTERNAL TABLE family(
name STRING,
friends ARRAY<STRING>,
children MAP<STRING, INT>,
address STRUCT<street: STRING, city: STRING>
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' ESCAPED BY '\\'
COLLECTION ITEMS TERMINATED BY '_'
MAP KEYS TERMINATED BY ':'
LINES TERMINATED BY '\n'
NULL DEFINED AS 'foonull'
STORED AS TEXTFILE
LOCATION '/tmp/family/';
--Use predefined custom SerDe
CREATE TABLE avroExample
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES ('avro.schema.literal'='{ "namespace": "org.apache.hive",
"name": "first_schema",
"type": "record",
"fields": [
{ "name":"string1", "type":"string" },
{ "name":"string2", "type":"string" }
] }');
--Use personalized custom SerDe(we may need to `ADD JAR xxx.jar` first to ensure we can find the serde_class,
--or you may run into `CLASSNOTFOUND` exception)
ADD JAR /tmp/hive_serde_example.jar;
CREATE EXTERNAL TABLE family (id INT, name STRING)
ROW FORMAT SERDE 'com.ly.spark.serde.SerDeExample'
STORED AS INPUTFORMAT 'com.ly.spark.example.serde.io.SerDeExampleInputFormat'
OUTPUTFORMAT 'com.ly.spark.example.serde.io.SerDeExampleOutputFormat'
LOCATION '/tmp/family/';
--Use `CLUSTERED BY` clause to create bucket table without `SORTED BY`
CREATE TABLE clustered_by_test1 (ID INT, AGE STRING)
CLUSTERED BY (ID)
INTO 4 BUCKETS
STORED AS ORC
--Use `CLUSTERED BY` clause to create bucket table with `SORTED BY`
CREATE TABLE clustered_by_test2 (ID INT, NAME STRING)
PARTITIONED BY (YEAR STRING)
CLUSTERED BY (ID, NAME)
SORTED BY (ID ASC)
INTO 3 BUCKETS
STORED AS PARQUET