使用Spark的“无Hadoop”构建
Spark 使用 Hadoop 客户端库来连接 HDFS 和 YARN。从 Spark 1.4 版本开始,该项目提供了“无 Hadoop”构建,使您能够更轻松地将单个 Spark 二进制文件连接到任何 Hadoop 版本。要使用这些构建,您需要修改 SPARK_DIST_CLASSPATH
以包含 Hadoop 的包 jar。最方便的方法是在 conf/spark-env.sh
中添加一个条目。
本页介绍如何将 Spark 连接到不同类型的 Hadoop 分发版。
Apache Hadoop
对于 Apache 分发版,您可以使用 Hadoop 的“classpath”命令。例如
### in conf/spark-env.sh ###
# If 'hadoop' binary is on your PATH
export SPARK_DIST_CLASSPATH=$(hadoop classpath)
# With explicit path to 'hadoop' binary
export SPARK_DIST_CLASSPATH=$(/path/to/hadoop/bin/hadoop classpath)
# Passing a Hadoop configuration directory
export SPARK_DIST_CLASSPATH=$(hadoop --config /path/to/configs classpath)
Spark 在 Kubernetes 上使用无 Hadoop 构建的设置
要在 Kubernetes 上运行 Spark 的无 Hadoop 构建,执行器镜像必须具有相应版本的 Hadoop 二进制文件,并设置正确的 SPARK_DIST_CLASSPATH
值。请参阅下面的示例,了解执行器 Dockerfile 中所需的相应更改。
### Set environment variables in the executor dockerfile ###
ENV SPARK_HOME="/opt/spark"
ENV HADOOP_HOME="/opt/hadoop"
ENV PATH="$SPARK_HOME/bin:$HADOOP_HOME/bin:$PATH"
...
#Copy your target hadoop binaries to the executor hadoop home
COPY /opt/hadoop3 $HADOOP_HOME
...
#Copy and use the Spark provided entrypoint.sh. It sets your SPARK_DIST_CLASSPATH using the hadoop binary in $HADOOP_HOME and starts the executor. If you choose to customize the value of SPARK_DIST_CLASSPATH here, the value will be retained in entrypoint.sh
ENTRYPOINT [ "/opt/entrypoint.sh" ]
...